Tag Archives: science

The Hits Just Keep on Coming


To view this on my blog site and sign up to receive notifications of future posts, please click here.

I have a hiking companion who loves math, computers, and to a large extent, eugenics. He posits that we will eventually understand the human genome so well that we will be able to make all humans “smart” or “better” through genetic engineering. I argue back endlessly, with little success, that his definition of “smart” and “better” may not be shared  by everyone (he counters that these definitions will be left to the parents…) and that there will be unintended consequences of diving into our DNA with CRISPR/Cas9 technology.

The wonderful complexity of humankind is, of course, reflected in every single cell in our bodies and in all of our cancer cells as well. The debate over the number of synapses (or permutations) in our brains versus atoms (or stars etc.) in the observable universe is well beyond my comprehension. Unfortunately the “much simpler” question of how many things go wrong in cancer cells is also mind boggling. Hence, the phenomenal work of one of the West Coast Dream Team’s recent publications is not surprising. A reductionist view is shown in this diagram from their paper published last month:

Screen Shot 2018-08-05 at 2.01.08 PM

The scientific team, using funds from PCF, SU2C, and Movember (among others), did a whole genome analysis of metastatic tumor specimens from 101 men with castration resistant (hormone insensitive) prostate cancer. There is an excellent report on this work from the UCSF News Center here. Lest you believe that the results have resulted in an “aha moment” that will lead to “A prostate cancer cure”, you might do as I had to do and Google the word I had not heard of in the above figure, “chromothripsis“. Rather, the research leads to some very important insights that will doubtless contribute towards more effective therapy for 1000’s of patients eventually. By looking at the structural variants in the DNA that occurs outside of expressed genes, a much more complex picture of what drives castration resistant prostate cancer (CRPC) becomes evident. For example the androgen receptor (AR) is over-expressed in the majority of metastases and this study found a region of the “junk DNA” (non-coding for genes) that lies 66.94 million base pairs upstream of the AR that was amplified in 81% of the cases. This was 11% more common than the amplification of AR itself – an indication of how important the DNA controlling a gene like AR is, compared to the gene itself. So much for calling the DNA that doesn’t code for a protein “junk”!

A second example is the insight into patients who have alterations in a gene called CDK12 that may render them more sensitive to one of the “hottest” areas of cancer research, the use of checkpoint inhibitors of the PD-1 pathway I described in my last post.  This abnormality results in the cancer cells having an increased number of “neoantigens” (targets) for the immune system to attack as shown in this illustration from another recent exceptional paper.

Screen Shot 2018-08-05 at 2.27.16 PM

The ongoing research from the many scientific teams focused on prostate cancer is awe-inspiring when you consider the complexities involved in the two figures in this post alone. Even getting a complete picture from a single patient is impossible, given the genetic instability and the variable mutations found in different metastases. Remember, this team looked at the DNA from only one (or a few) of the many metastatic sites found in each patient. Other studies have shown lots of different mutations depending on which site is evaluated as I reviewed here.  In spite of all of this complexity, the ability to at least begin to understand what is going on “underneath the hood” is the way forward, and just as we can recognize Fords vs Chevys vs Toyotas, “brands” that emerge from such studies will lead to treatments that are more appropriate for certain classes of patients. As we have known for a very long time, the most common feature is the “gasoline” of testosterone, and how it fuels the amplified AR has remained an effective target for the newer drugs like abiraterone, enzalutamide, and apalutamide. Perhaps studies such as this one will lead to a way of kinking the hose upstream of the gasoline nozzle, or throwing sand (immunotherapy) into the engine itself. But… to admit that we will never understand it all (or design the “perfect human”) still seems an appropriate expression of humility to me.

2 Comments

Filed under General Prostate Cancer Issues

Of Prostates and Teslas


To view this on my blog site and sign up to follow future posts, please click here.

If you thought this might be an article about how your urologist shops for his/her newest fancy car, you are mistaken (sadly…). Nikola Tesla was a fascinating inventor and ultimately “mad scientist” at the turn of the last century. Every time you plug your cuisinart into the wall to chop something up, you are the beneficiary of his contributions to the alternating current coming to your kitchen and the motor driving the chopper. My favorite story (because of the local connection) was his laboratory in Colorado Springs, where he attempted to develop a method of transmitting power without wires. By creating YUUUGE electromagnetic fields, he could make lots of electrical things happen at considerable distances, including knocking out the power station for the city. Here’s a quote from the Wikipedia article:

He produced artificial lightning, with discharges consisting of millions of volts and up to 135 feet (41 m) long.[11] Thunder from the released energy was heard 15 miles (24 km) away in Cripple Creek, Colorado. People walking along the street observed sparks jumping between their feet and the ground. Sparks sprang from water line taps when touched. Light bulbs within 100 feet (30 m) of the lab glowed even when turned off. Horses in a livery stable bolted from their stalls after receiving shocks through their metal shoes. Butterflies were electrified, swirling in circles with blue halos of St. Elmo’s fire around their wings.[12]

Of course, for purposes of this blog, the key thing is that the strength of magnetic fields was named after him. When you get an MRI of your prostate, brain, or anything else, you are put into a machine with a superconducting magnet that produces 1.5 or 3 “T” of strength. At the risk of being completely wrong and oversimplifying, what happens in the MRI machine is that a strong magnetic field temporarily lines up the hydrogen atoms in the water that is 70% of “you”, and when these atoms “relax” they give off radio signals that can be converted to images. Details and images are here. Early on, my colleagues and I were fascinated by the possibility of using MR to investigate the prostate gland and published an article (completely ignored – cited only 3 times, so must not have been that important…) showing changes in MR that occurred after testosterone administration to castrated rats.

Now there are complex MRI protocols to image the prostate using techniques I don’t fully understand (multiparametric imaging) that give us remarkable pictures of the prostate gland. Here is one:

Screen Shot 2018-01-10 at 1.53.20 PM

Prostate gland with red arrow indicating a suspicious lesion that could be biopsied or followed closely.

As with any radiologic imaging technique, the skill of the radiologist as well as the equipment being used determine the accuracy of the MRI to diagnose a cancer.

While most of us learned how to “read X-rays” in medical school, it is beyond most clinicians to read MRI’s of the prostate. Fortunately, the radiologists have developed a system that helps us think about “how abnormal” some area of the gland is, called PI-RADS.  This can be very useful in thinking about what area to concentrate on when biopsying a patient, or in trying to determine whether surgery or radiation therapy should be altered if there is concern that the cancer is outside of the gland. An interesting question that is still controversial is whether the MRI could replace repetitive biopsies in a man who has chosen active surveillance. Particularly when combined with molecular techniques (see my previous blog here) to characterize biopsies, it may be that Tesla will be helping to do more than get you from one place to another or run your electric shaver. (Rock on, Elon Musk) To me, that is a pretty interesting outcome from knocking out all of the lights in Colorado Springs!

6 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment