Tag Archives: prostate cancer

It’s MO time – please help!


To view this post on my blog site, sign up for future posts, and read more info relevant to prostate cancer, please click here. Donate to my moustache here. Even better, grow your own and get your friends to help out here. The more of us who join in, the wider the recognition of men’s health issues.

In my career fighting for the cure of prostate cancer, two organizations (besides the National Cancer Institute) have been outstanding partners. Movember was started by a couple of friends in a bar in Australia. This became the answer to a long standing jealousy of mine for something as popular and effective as the Susan G. Koman Foundation and Race for the Cure. I often refer to our prostate cancer journey when I lecture by noting how we “crawl for the cure” while our sisters are racing. In 2016, the NCI budget for breast cancer research was $519.9 million, more than twice as much as that for prostate cancer at $241 million. This, in spite of the fact that prostate cancer deaths this year are 3/4 as common (29,430) as breast cancer deaths (40,920). It’s not a contest really, since all cancer research is moving the field forward rapidly, but Movember has been incredibly helpful in sponsoring research and advocating for us.

The other organization, Prostate Cancer Foundation, shows how much a single individual with great connections and personal motivation can do. Michael Milken deserves enormous credit for his vision and leadership. I personally benefited from grants given out by the foundation, and even more from their amazing annual meeting that draws together prostate cancer researchers from around the world to share data and ideas. Dr. Howard Soule is a key factor in PCF’s incredible success and his name should be as well known as Susan G. Koman in my view.

I hope you will join with all of us in fighting for the cure in prostate cancer. Grow one, or support someone who is growing, and tell your friends. The progress and future has never been brighter, and our hairy upper lips should show it!

Screen Shot 2018-10-31 at 12.44.06 PM

2 Comments

Filed under General Prostate Cancer Issues

A perfect death


To read this essay on the blog site, find many more blogs for prostate cancer patients and their families, and sign up to be notified about future posts, click here.

This week in which the country will come together to mourn the passing of a true American original, John McCain, it might be worth considering our (your) own mortality. Even as the ongoing progress toward controlling prostate cancer is underway, it remains clear that “something else” will get us. As an example, in a study I was privileged to lead among patients with high risk prostate cancer, other cancers (many of which were caused by our adjuvant mitoxantrone treatment) were as likely to lead to death and prostate cancer was the cause of dying only ~20% of the time

Screen Shot 2018-08-27 at 8.22.09 AM

As oncologists, we face the “end of life” issues more frequently than most physicians, and certainly deal with the reality of death more than folks in most other professions. I distinctly remember one lovely woman in her 50’s who was very open in discussing her wishes. She wanted to die while lying on her favorite beach in Florida watching the sunlight sparkling on the ocean – not an easy thing to arrange (and it didn’t happen). My own fantasy would be to have a lovely vacation in Hawaii (without this week’s rain) with my entire family, say my good-byes as I put them all on the plane, and stay over an extra day to pay for the hotel and be sure all of my financial affairs were up to date – then die of a heart attack on the way home the next day. Perfect. The airline would be carrying my carcass home for the mere cost of a coach seat and I wouldn’t even have to suffer that long in the crunched position with no leg room.

Short of these fantasies, however, I recently undertook an exercise that anyone could do and I herewith commend to you as well. My wife and I were lucky enough to score tickets to the London production of Hamilton last February. In it, there were two numbers that grabbed me by the heart. First was Washington’s “teach ’em how to say goodbye” song, “One Last Time”. As with John McCain’s final commentaries over the past few months, Hamilton’s farewell speech written for Washington was masterful (as is Lin-Manuel Miranda’s reprise).

But the song that most moved me to tears (and action) was “Who Lives, Who Dies, Who Tells Your Story”. After listening to it about a dozen times, I realized that we all have a story. It may not be as honest/noble as John McCain’s, or as consequential as Hamilton’s or Washington’s, but for some small group of your relatives or children or grandchildren, your story will have special meaning. If you don’t write it, your memories of your father, your grandfather, your family in general will die with you. In my case, I read a couple of autobiographies, self-published, from friends/acquaintances and decided that their stories were highly personal, and not terribly interesting. But when I started writing the story of my own grandfather and father, and my story, it was a joyful experience of reliving many happy memories, and a way of reconnecting with my first love affair, our children’s births, and the many blessings that have come my way. The result is not a literary masterpiece, but I am going to have it bound and give a copy to each of my kids to gather dust on their bookshelves.

In the arc of history, some things have not changed. “Our days may come to seventy years, or eighty, if our strength endures; yet the best of them are but trouble and sorrow, for they quickly pass, and we fly away.” (Psalm 90:10). Although trouble and sorrow are a part of life (and of dying), there can be real joy in pausing to appreciate all life has given you. Carpe diem!

 

10 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy

The Hits Just Keep on Coming


To view this on my blog site and sign up to receive notifications of future posts, please click here.

I have a hiking companion who loves math, computers, and to a large extent, eugenics. He posits that we will eventually understand the human genome so well that we will be able to make all humans “smart” or “better” through genetic engineering. I argue back endlessly, with little success, that his definition of “smart” and “better” may not be shared  by everyone (he counters that these definitions will be left to the parents…) and that there will be unintended consequences of diving into our DNA with CRISPR/Cas9 technology.

The wonderful complexity of humankind is, of course, reflected in every single cell in our bodies and in all of our cancer cells as well. The debate over the number of synapses (or permutations) in our brains versus atoms (or stars etc.) in the observable universe is well beyond my comprehension. Unfortunately the “much simpler” question of how many things go wrong in cancer cells is also mind boggling. Hence, the phenomenal work of one of the West Coast Dream Team’s recent publications is not surprising. A reductionist view is shown in this diagram from their paper published last month:

Screen Shot 2018-08-05 at 2.01.08 PM

The scientific team, using funds from PCF, SU2C, and Movember (among others), did a whole genome analysis of metastatic tumor specimens from 101 men with castration resistant (hormone insensitive) prostate cancer. There is an excellent report on this work from the UCSF News Center here. Lest you believe that the results have resulted in an “aha moment” that will lead to “A prostate cancer cure”, you might do as I had to do and Google the word I had not heard of in the above figure, “chromothripsis“. Rather, the research leads to some very important insights that will doubtless contribute towards more effective therapy for 1000’s of patients eventually. By looking at the structural variants in the DNA that occurs outside of expressed genes, a much more complex picture of what drives castration resistant prostate cancer (CRPC) becomes evident. For example the androgen receptor (AR) is over-expressed in the majority of metastases and this study found a region of the “junk DNA” (non-coding for genes) that lies 66.94 million base pairs upstream of the AR that was amplified in 81% of the cases. This was 11% more common than the amplification of AR itself – an indication of how important the DNA controlling a gene like AR is, compared to the gene itself. So much for calling the DNA that doesn’t code for a protein “junk”!

A second example is the insight into patients who have alterations in a gene called CDK12 that may render them more sensitive to one of the “hottest” areas of cancer research, the use of checkpoint inhibitors of the PD-1 pathway I described in my last post.  This abnormality results in the cancer cells having an increased number of “neoantigens” (targets) for the immune system to attack as shown in this illustration from another recent exceptional paper.

Screen Shot 2018-08-05 at 2.27.16 PM

The ongoing research from the many scientific teams focused on prostate cancer is awe-inspiring when you consider the complexities involved in the two figures in this post alone. Even getting a complete picture from a single patient is impossible, given the genetic instability and the variable mutations found in different metastases. Remember, this team looked at the DNA from only one (or a few) of the many metastatic sites found in each patient. Other studies have shown lots of different mutations depending on which site is evaluated as I reviewed here.  In spite of all of this complexity, the ability to at least begin to understand what is going on “underneath the hood” is the way forward, and just as we can recognize Fords vs Chevys vs Toyotas, “brands” that emerge from such studies will lead to treatments that are more appropriate for certain classes of patients. As we have known for a very long time, the most common feature is the “gasoline” of testosterone, and how it fuels the amplified AR has remained an effective target for the newer drugs like abiraterone, enzalutamide, and apalutamide. Perhaps studies such as this one will lead to a way of kinking the hose upstream of the gasoline nozzle, or throwing sand (immunotherapy) into the engine itself. But… to admit that we will never understand it all (or design the “perfect human”) still seems an appropriate expression of humility to me.

3 Comments

Filed under General Prostate Cancer Issues

An Amateur Explanation of Immunotherapy


To read this blog on my blogsite, find other blogs that might be of interest to you, and sign up for notifications of future blogs, click here.

For as long as I can remember, there has been lurking excitement regarding the possibility that our immune systems can find and destroy cancer cells. The history of well-documented spontaneous remissions goes back decades and is briefly reviewed here. I have personally never seen a spontaneous remission of cancer, although I have had patients who have done far better than anyone would have expected, suggesting that something must have slowed down their tumor progression.

In prostate cancer, one of the early hints that it might be possible to stimulate an immune attack on the disease came from the studies on Provenge (Sipuleucel-T). My colleagues and I placed several patients on the trials that led to approval of this “vaccine” by the FDA. These studies have continued to demonstrate improved survival of patients with metastatic disease who have failed hormone therapy, although the trials were all done before the availability of the newer ADT drugs abiraterone, enzalutamide, and apalutamide. On the other hand, in spite of the optimistic data we obtained in another vaccine trial on a product known as prostvac, the pivotal trial to prove efficacy failed. It is possible that the vaccine produced modest efficacy, but the signal was drowned out by treatment with the new ADT agents.

As anyone who watches the evening news or other TV-ad-saturated programs aimed at us seniors, other cancers – especially melanoma, lung, bladder, kidney and a few additional ones have been more “easily” treated with newer immune therapies known as check point inhibitors. The idea here is that our normal immune system has built in “braking systems”, the best studied and clinically utilized to date being the PD-1/PDL-1 mechanism. If we immunize you against, for example, measles – you want a vigorous immune response, but you don’t want your entire immune system to keep working on fighting measles. There are other threats it needs to be on guard against. Shutting down the T-cells that fight viruses and cancer involves the Programed Death receptor-1 on these T-cells with a specific protein, Programed Death receptor Ligand-1. Cancer cells can take advantage of initiating this same braking system by releasing their own PDL-1 that will kill the incoming tumor-fighting T-cell. This devious cancer mechanism to avoid our immune systems can be blocked by therapeutic antibodies directed against either the receptor or the PDL-1 ligand protein.

At the recent ASCO meeting, it was revealed that selected metastatic lung cancer patients who have an activated PD-1/PDL-1 braking system are now more effectively treated with pembrolizumab (Keytruda) than chemotherapy. It is emerging that the subgroup of patients who have tumors that are genetically highly unstable, (regardless of tumor type) with lots of mutations leading to abnormal proteins that can stimulate an immune response, may all benefit from PD-1/PDL-1 directed therapy. These patients, including prostate cancer patients can be identified by testing their tumors for microsatellite instability or mismatch repair deficiency. At a practical level, however, when and how to test prostate cancers for such biomarkers remains challenging. Last week at the ASCO annual meeting, Dr. De Bono from the UK reported results on treating patients with metastatic prostate cancer who had progressed on hormones and chemotherapy (docetaxel) with pembrolizumab. 17/163 patients had ≥30% shrinkage of their tumors, but overall results were disappointing with only 11% of patients having ≥50% decline in PSA. Testing for the presence of PDL-1 was not particularly predictive of which patient would benefit most. However, this way of treating prostate cancer will eventually lead to important progress in my opinion. Combining vaccines with the checkpoint inhibitors is currently being studied, and there are other checkpoint drugs and targets that are in development as well. Timing the checkpoint drugs with hormonal therapy or radiation therapy may also find optimal ways of stimulating an immune response. The field of immuno-oncology is an exciting new frontier and well worth keeping your eyes on.

2 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment

Of Prostates and Teslas


To view this on my blog site and sign up to follow future posts, please click here.

If you thought this might be an article about how your urologist shops for his/her newest fancy car, you are mistaken (sadly…). Nikola Tesla was a fascinating inventor and ultimately “mad scientist” at the turn of the last century. Every time you plug your cuisinart into the wall to chop something up, you are the beneficiary of his contributions to the alternating current coming to your kitchen and the motor driving the chopper. My favorite story (because of the local connection) was his laboratory in Colorado Springs, where he attempted to develop a method of transmitting power without wires. By creating YUUUGE electromagnetic fields, he could make lots of electrical things happen at considerable distances, including knocking out the power station for the city. Here’s a quote from the Wikipedia article:

He produced artificial lightning, with discharges consisting of millions of volts and up to 135 feet (41 m) long.[11] Thunder from the released energy was heard 15 miles (24 km) away in Cripple Creek, Colorado. People walking along the street observed sparks jumping between their feet and the ground. Sparks sprang from water line taps when touched. Light bulbs within 100 feet (30 m) of the lab glowed even when turned off. Horses in a livery stable bolted from their stalls after receiving shocks through their metal shoes. Butterflies were electrified, swirling in circles with blue halos of St. Elmo’s fire around their wings.[12]

Of course, for purposes of this blog, the key thing is that the strength of magnetic fields was named after him. When you get an MRI of your prostate, brain, or anything else, you are put into a machine with a superconducting magnet that produces 1.5 or 3 “T” of strength. At the risk of being completely wrong and oversimplifying, what happens in the MRI machine is that a strong magnetic field temporarily lines up the hydrogen atoms in the water that is 70% of “you”, and when these atoms “relax” they give off radio signals that can be converted to images. Details and images are here. Early on, my colleagues and I were fascinated by the possibility of using MR to investigate the prostate gland and published an article (completely ignored – cited only 3 times, so must not have been that important…) showing changes in MR that occurred after testosterone administration to castrated rats.

Now there are complex MRI protocols to image the prostate using techniques I don’t fully understand (multiparametric imaging) that give us remarkable pictures of the prostate gland. Here is one:

Screen Shot 2018-01-10 at 1.53.20 PM

Prostate gland with red arrow indicating a suspicious lesion that could be biopsied or followed closely.

As with any radiologic imaging technique, the skill of the radiologist as well as the equipment being used determine the accuracy of the MRI to diagnose a cancer.

While most of us learned how to “read X-rays” in medical school, it is beyond most clinicians to read MRI’s of the prostate. Fortunately, the radiologists have developed a system that helps us think about “how abnormal” some area of the gland is, called PI-RADS.  This can be very useful in thinking about what area to concentrate on when biopsying a patient, or in trying to determine whether surgery or radiation therapy should be altered if there is concern that the cancer is outside of the gland. An interesting question that is still controversial is whether the MRI could replace repetitive biopsies in a man who has chosen active surveillance. Particularly when combined with molecular techniques (see my previous blog here) to characterize biopsies, it may be that Tesla will be helping to do more than get you from one place to another or run your electric shaver. (Rock on, Elon Musk) To me, that is a pretty interesting outcome from knocking out all of the lights in Colorado Springs!

6 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment

23 & You – Genetic tests for pca


The genetics of prostate cancer are daunting, but there are now a range of tests available that could be used at almost every stage of the disease IF you can deal with the answers you are likely to receive. Generally these tests are the product of science that goes something like this: A complete molecular picture is taken of all the mutations or all the genes expressed in a series of prostate cancer patients diagnosed years ago. For these patients “all you need to do” is go back to the paraffin blocks that were saved for each patient, extract the DNA/RNA and quantify gene expression and any mutations that can be detected. A decade ago, the technology for doing this was daunting, but now it is relatively easy. Once you have the gene expression profile, you can ask a computer to look for gene expressions that correlate with a certain outcome. For example, you take 500 patients from one center for whom the outcome is known…50 patients are dead, 32 from prostate cancer…70 patients developed metastases by 5 years…these 315 patients are alive and well with no evidence of recurrence…etc. Let’s say there are 50 genes that show changes in expression or mutation. Do we need all 50 to forecast what happened to the patients in that group? No. A computer algorithm can keep testing combinations and permutations of genes and reduce the 50 to a smaller number. We can either let the computer pick the final genes, or we could start with genes we think are related to tumor progression and then do the reduction. In the end, we have a small number of genes with characteristics that accurately separate the patients into “good” and “bad” groups and everything in between. We now take our gene panel, reduced to something like a computer chip and apply the test to 500 patients at another institution blinded from what actually happened to those patients. If our algorithm works, we should be able to accurately predict what happened to those patients in the next 5 or 10 years. If it works, our testing system has been validated, and we can begin offering the test to newly diagnosed patients at some stage of illness. For example, a Gleason 3+4=7 patient might fall into a group where surgery produced a 90% chance of being cured at 10 years, or a 40% chance depending on the gene expression. BUT…and this is key…what to do about the result is still a complex decision for both patient and physician. If you are a Gleason 3+3=6 patient and with no treatment at all you have an 85% chance of “cure” at ten years, is that good enough? What if it is a 95% chance? Will that make you more comfortable choosing no treatment, or do you want to be cured at any cost (impotence, incontinence, other side effects of radiation or surgery)?

As none of these tests has been proven in a prospective study – that is, using the tests to do something like even more aggressive therapy in a group of high risk patients, we are still in the early stages of understanding how and when to use them. Fortunately, my colleague, Dave Crawford and some colleagues have put together an excellent website to help patients/doctors understand the tests. http://www.pcmarkers.com has a list of most of the available tests and you can see what results might look like before you and your physician decide to send one off. This is a rapidly evolving field however, and not every test that is being commercialized is listed, and at big centers, there are always new tests being developed.

Finally, as with all of medicine, the payment systems/insurance coverage is crazily complex. Only today, I received an email with the “news” that a cardiologist/congressman, Rep. Buchson has introduced a bill called the “Prostate Cancer Misdiagnosis Elimination Act of 2017” that uses DNA profiling to make sure the tissue being tested is yours. You could theoretically apply this test to ANY cancer biopsy of course, so why prostate cancer? Then there is the motivation…call me cynical, but I suspected that the good congressman, meddling in medicine, might have a local connection, and sure enough, the company that markets the test is from his home state, Indiana. Not to say it isn’t important to know that tissue being tested comes from the correct patient or that the test isn’t a nice application of the kind of technology that identified OJ’s blood, just that we live in interesting times where medical technology is rapidly consuming more and more of our tax/insurance/personal dollars. Personalized medicine will depend totally on this type of technology and can be incredibly expensive. Whether it saves money or consumes it may depend on how many “worthless” (for that patient…and is a treatment with only a 5% chance of working really worthless??…not if you are in the 5% group) treatments are avoided and at what cost. I don’t have the answers. Hopefully this blog at least helps you begin to understand the current molecular diagnostic landscape.

5 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment

A statin a day??


To view this post on the blog’s website, see other posts, or sign up to be notified about future posts, click here.

I remember when the statins first came out in the late 1980’s. I had a mildly elevated cholesterol that didn’t respond much to the dietary changes (admittedly few) I was willing to make, so taking a statin seemed like a great step forward. But… were they safe? Of course the same could be asked of aspirin, bike riding, eating meat, or skiing. It’s really about risk/benefit in the end. In the years that followed, I ended up taking statins with the permission of my doctor and they work far better than dietary manipulation for my cholesterol and I combine their use with exercise for all of the other benefits (read here). I previously posted about statin use here, but there are new data all the time worth keeping up with.

In a recent JCO article, a large group (31,790) of Danish men were evaluated for prostate cancer specific and overall mortality depending on their use of statins. Even though there was a higher mortality from prostate cancer than is usually seen in such studies (23% – potentially because there is lower use of screening in Denmark), the prostate cancer specific death rate and overall death rate was 15-20% lower in the men who took statins after diagnosis. This was regardless of their treatment (surgery, radiation, hormones). Since I mentioned aspirin, other studies have suggested that men with high Gleason scores (≥8) may benefit from aspirin use as well. Statins have also been shown to inhibit a long list of other cancer causes of death that you can read about in Wikipedia, so the benefits to prostate cancer patients, who often die of other cancers or cardiovascular disease is not limited to their concerns about prostate cancer itself.

In an editorial accompanying the JCO article by Mucci and Kantoff, there is a thoughtful review of whether statins should be recommended for all men with prostate cancer. The article also discusses how they might work to slow down prostate cancer, so be sure to read it for the excellent summary. They conclude that the evidence is still not there, although certainly the large number of studies and meta-analyses they provide make a strong case. My question would be “what is the risk?”, and it seems to be minimal. Statins are cheap and widely available. They provide risk-lowering effects on cholesterol/heart disease, and the only side effect that is a problem in general is the muscle pain that occurs in some patients, which almost always goes away when you stop the drug. I can’t disagree with the thought that a prospective randomized trial in a subgroup of prostate cancer patients is desirable, but in the absence of such a trial to invite patients’ participation, I personally encourage patients to take statins unless their primary care physician disagrees. For that matter, I would almost encourage their presence in the water supply like fluorides given all their other benefits (just kidding, but they really do have a long list of benefits and very favorable risk profile in my view).

An apple a day is a good idea. Statins should maybe join that, and keep exercising!

 

3 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy