Tag Archives: imaging

PSMA PET-CT scans for Prostate Cancer

To view this on my blog site, search for other blogs of interest or sign up to be notified of future blogs, please click here.

PSMA stands for Prostate Specific Membrane Antigen, which is a protein (enzyme) that is expressed on the surface of prostate cancer cells (and on a few other cell types). As with many cell surface proteins, you can find ligands that will bind to the protein, and then label these with radioactive isotopes that allow imaging. PET stands for Positron Emission Tomography, and of course, CT stands for Computerized Tomography. When you put these technologies together, you obtain a powerful way to look for prostate cancer that has spread outside the prostate gland. The physics of this (how a positron interacts with an electron, releasing gamma photons at 180 degrees) is very cool, but probably of interest only to the most nerdy. (I made a cloud chamber for my 7th grade science project and my hiking buddy is a nuclear medicine doc who wrote a definitive text on the math/science of his craft…so go figure).

Prior to developing PET agents for prostate cancer, we had standard CT scans and bone scans and we used these to determine whether someone with, for example, a very high PSA or high Gleason score had cancer deposits that had escaped (metastasized) from the prostate. If so, it was felt that putting them through surgery or radiation treatments in an attempt to cure was fruitless and exposed the patient to the unnecessary toxicity risks (impotence, incontinence, rectal damage, etc.) Especially if they had symptoms (e.g. bone pain), hormone treatment reducing testosterone was the best approach. If you had a rising PSA several years after local treatment, the question was always, “Where is the cancer?” but the sensitivity of routine bone and CT scans was quite limited not showing anything until the PSA reached 10 or so at which time ~1/2 of scans would be positive. Screen Shot 2020-04-26 at 7.26.14 AMThis figure illustrates the difference in sensitivity. A normal sized lymph node on CT scan (left) is revealed to  contain prostate cancer with the PET isotope technique (right). At present, the only approved PET scan in the U.S. is fluciclovine, the “Axumin” scan, which the FDA approved for detecting cancer in patients with rising PSA, but not in newly diagnosed patients. In several studies PSMA-PET CT scans are even more sensitive (about 3x) than Axumin. At the risk of calling up an overused phrase, “this changes everything”.

First, it is clear that many high risk patients we would previously have treated with surgery or radiation to the prostate hoping to cure them might now be found to have prostate cancer deposits outside of the treatment target (prostate or prostate + pelvic lymph nodes). A superb study in this month’s Lancet found that PSMA PET-CT scans provided higher sensitivity (85% vs 38%) and specificity (98% vs 91%) than routine bone and CT scans in high risk patients (PSA >20, Gleason 4+3 or worse). Does this mean we shouldn’t treat the prostate in high risk patients with positive scans? In the study, conventional imaging changed the management in 15% of men, while PSMA PET-CT imaging changed the plans in 28% (p=0.008). Should all high risk patients have a PSMA PET-CT before deciding on treatment? Should the FDA approve this scan quickly? (It is currently available only in research centers and not covered by insurance…read my blog on how to search for such studies or click here).

Second, what about treating a small number of prostate metastases (oligometastatic prostate cancer) in a patient who was treated years ago and now has a rising PSA? Ongoing investigations suggest this might delay the need for hormone therapy in such patients or potentially even cure some of them. But the PSMA PET-CT isn’t perfect. How high do you let the PSA go up before ordering such a scan? – the farther it rises, the more likely the scan will show something, but that gives the cancer more time to spread. A negative scan is no guarantee there aren’t many more foci of a few prostate cancer cells that will eventually show up elsewhere in the body. Is this some version of Whack-a-mole? And how do we define “cure” anyway?? (My personal definition is that you die from something else, regardless of your PSA or scan results).

Finally, since even at research centers the PSMA PET-CT scan may cost you $3,000 or so, is it worth it? It is “free” in the European health care systems, but we all know nothing is free – even if Medicare pays for something it costs society and ultimately must be accounted for in terms of value. Medicare covered PSMA PET-CT’s vs fixing pot holes and bridges? How about finding a treatment for SARS Co-V2 instead? No easy answers, but if you are like me, homebound as a “high risk” senior citizen, plenty to think about. Wash your hands, wear your mask, and enjoy your grandkids on Zoom!


Filed under General Prostate Cancer Issues, Oligometastatic prostate cancer, Prostate cancer therapy, Targeted treatment

Of Prostates and Teslas

To view this on my blog site and sign up to follow future posts, please click here.

If you thought this might be an article about how your urologist shops for his/her newest fancy car, you are mistaken (sadly…). Nikola Tesla was a fascinating inventor and ultimately “mad scientist” at the turn of the last century. Every time you plug your cuisinart into the wall to chop something up, you are the beneficiary of his contributions to the alternating current coming to your kitchen and the motor driving the chopper. My favorite story (because of the local connection) was his laboratory in Colorado Springs, where he attempted to develop a method of transmitting power without wires. By creating YUUUGE electromagnetic fields, he could make lots of electrical things happen at considerable distances, including knocking out the power station for the city. Here’s a quote from the Wikipedia article:

He produced artificial lightning, with discharges consisting of millions of volts and up to 135 feet (41 m) long.[11] Thunder from the released energy was heard 15 miles (24 km) away in Cripple Creek, Colorado. People walking along the street observed sparks jumping between their feet and the ground. Sparks sprang from water line taps when touched. Light bulbs within 100 feet (30 m) of the lab glowed even when turned off. Horses in a livery stable bolted from their stalls after receiving shocks through their metal shoes. Butterflies were electrified, swirling in circles with blue halos of St. Elmo’s fire around their wings.[12]

Of course, for purposes of this blog, the key thing is that the strength of magnetic fields was named after him. When you get an MRI of your prostate, brain, or anything else, you are put into a machine with a superconducting magnet that produces 1.5 or 3 “T” of strength. At the risk of being completely wrong and oversimplifying, what happens in the MRI machine is that a strong magnetic field temporarily lines up the hydrogen atoms in the water that is 70% of “you”, and when these atoms “relax” they give off radio signals that can be converted to images. Details and images are here. Early on, my colleagues and I were fascinated by the possibility of using MR to investigate the prostate gland and published an article (completely ignored – cited only 3 times, so must not have been that important…) showing changes in MR that occurred after testosterone administration to castrated rats.

Now there are complex MRI protocols to image the prostate using techniques I don’t fully understand (multiparametric imaging) that give us remarkable pictures of the prostate gland. Here is one:

Screen Shot 2018-01-10 at 1.53.20 PM

Prostate gland with red arrow indicating a suspicious lesion that could be biopsied or followed closely.

As with any radiologic imaging technique, the skill of the radiologist as well as the equipment being used determine the accuracy of the MRI to diagnose a cancer.

While most of us learned how to “read X-rays” in medical school, it is beyond most clinicians to read MRI’s of the prostate. Fortunately, the radiologists have developed a system that helps us think about “how abnormal” some area of the gland is, called PI-RADS.  This can be very useful in thinking about what area to concentrate on when biopsying a patient, or in trying to determine whether surgery or radiation therapy should be altered if there is concern that the cancer is outside of the gland. An interesting question that is still controversial is whether the MRI could replace repetitive biopsies in a man who has chosen active surveillance. Particularly when combined with molecular techniques (see my previous blog here) to characterize biopsies, it may be that Tesla will be helping to do more than get you from one place to another or run your electric shaver. (Rock on, Elon Musk) To me, that is a pretty interesting outcome from knocking out all of the lights in Colorado Springs!


Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment