Tag Archives: cancer

Changing States: Does a Blog Disappear?


To view this blog on my blog site, subscribe to future blogs (if any) and search for previous essays, please click here.

“Our patients lives and identities may be in our hands, yet death always wins. Even if you are perfect, the world isn’t. The secret is to know that the deck is stacked, that you will lose, that your hands or judgment will slip, and yet struggle to win for your patients. You can’t ever reach perfection, but you can believe in an asymptote toward which you are ceaselessly striving.” -Paul Kalanithi in “When Breath Becomes Air“.

This week, after considerable thought and with great ambivalence, I began saying goodbye to my patients. I have intentionally made my “retirement” a prolonged process, stretching back nearly 15 years and beginning with turning my research laboratory over to a wonderful trainee/fellow, Tom Flaig (now Vice Chancellor for Research at CU). I began to stop writing grants (for the most part), working more in the clinic on other people’s ideas, and continuing to write this blog while serving on various boards and IDMC panels (including with the two authors of that IDMC link). Eventually, I reduced my clinic time to one day/week, focusing entirely on prostate cancer and seeing patients only at our outreach site, the Shaw Cancer Center in Vail. But, as I anticipate turning 75 this summer, and as my wife has pointed out, “no one really wants an ‘over the hill’ physician” (even if that doctor is still doing well by his/her patients). It is time to leave the clinic. As Kalanithi points out, inevitably “your hands or judgment will slip”. And even if they haven’t or never do, I believe there is joy and elegance in stepping aside at the right time to provide opportunities for younger physicians to take your place and to the extent they wish, offer advice (wisdom?) if needed.

But what to do with a blog?? As an early adopter, I had great satisfaction helping ASCO develop its website, www.ASCO.org and wrote about what I envisioned as the evolution of internet oncology in this article. My colleagues and I assisted in moving much of the society’s print media online as well as hosting what I think may have been one of the first “virtual meetings” of a medical society in 1995. With the help of a contractor, we digitized 35mm slides, recorded audio, then merged them “by hand” and posted presentations on the internet (within hours of their live presentation) for viewing around the world. Shortly thereafter, I was invited to write medical blogs, and when that effort became commercialized with ads, I elected to start writing this blog “commercial free”. As the internet technology continued to evolve with the evolution of social media (twitter, instagram, tiktok, etc.) I opted out, and so this blog is all that remains of my “brief but spectacular” foray into content creation for the digital world.

The statistics on 733 subscribers to this blog suggest that relatively few visit the website, although I suspect more read the essays themselves which are sent out by the site as emails. Here are the stats for the last quarter:

The way you got this email (or link if you are reading on the wordpress site) is “push technology”. You opted in/subscribed to receive the emails. This led me to wonder what happens to an email or blog when you change pages or “delete”. We all know that they stay somewhere “forever”. I know this means bits and bytes on some server. But when I tried to think about it in Kalanithi terms to title this essay, I tried to imagine “When Pixels Become Electrons” or something similar. I failed. Here is how pixels work and this is how electrons control them. What happens to blogs is still mysterious to me, but I’m switching formats to “pull technology”: responding to queries/ideas rather than guessing what you might want.

There are now numerous online sources for prostate cancer information. If you want excellent push technology to keep you up, I recommend subscribing to “The Prostate Cancer Daily” written by and for experts in the field. If you want to look something up, like the latest clinical trials, please read this blog I previously posted.

Thus…I have decided to change states – just like the LCD crystals that change the polarization of the pixels that have turned black to provide you this text. Going forward, I will use this blog to try and help patients/families only IF they want, by responding to questions, but not by trying to guess what subjects may be of interest and creating a post. I am happy to do whatever research is necessary to explain advances and comment on the science behind them if you send a topic or question to me at prost8blog@gmail.com. I will post monthly answers here as essays on www.prost8blog.com so everyone can see them who is a subscriber. The person(s) who submit questions/ideas (if any) will remain anonymous and I will NOT provide case specific advice. I will also not send return emails from the gmail account except to indicate I have received your request/idea.

BOTTOM LINE: This will be the last post on this blog unless I receive a topic request or question at prost8blog@gmail.com. I will monitor that email site on a monthly basis and post here as needed. I have loved being a part of helping prostate cancer patients/families and wish the best to all of you who have subscribed. If the new approach works, great! And if not, I thank you (and your computer pixels) for sharing some of our lives together. Godspeed…

33 Comments

Filed under General Prostate Cancer Issues

Cancer Camp and Survivorship


A cancer diagnosis affects every patient in a different way. However, regardless of what type of cancer is involved, it is a cold water “slap in the face” that we all share the same fate: “our days are numbered” – something everyone knows but we generally find it more convenient to simply not think about.

Prostate cancer, in my opinion, is somewhat different in this regard for most men. First, like all cancers, it is clearly a disease of aging, but even more so. The median age at the time of diagnosis is 66 years. This means the majority of newly diagnosed men have lived a reasonably long (and hopefully healthy) life. There has been time to deal with other health threats, watch children grow, and usually face the deaths of parents or close family members. However, the good news is that the vast majority of men will still have the opportunity for enjoying many more years of living.

Taken from the US SEER database: https://seer.cancer.gov/statfacts/html/prost.html

In fact, regardless of race or ethnicity, over 90% of men newly diagnosed with prostate cancer will be alive in 10 years. These data hold true even for men with regional disease, but fall off rapidly if metastatic disease develops. And there is continued improvement in treatment for the metastatic patients as well. In a recent article looking at three large studies for the benefit of second generation androgen receptor antagonists (enzalutamide, apalutamide, darolutamide) to delay metastases and improve survival, even men >80 years of age clearly did better than before.

From Lancet Oncology, July 23, 2021 https://doi.org/10.1016/S1470-2045(21)00334-X

So the question becomes, “what will you do with the time you have left?” regardless of how long that is. My thought, having just returned from volunteering at the Epic Experience cancer camp, is that it always good to take some time and reflect on how you want to spend that time. Write another paper? Start another company? Make even more money? Grasp for the latest treatment option? Or potentially reconsider family and friends and what really matters to you. The Epic organization has had trouble recruiting men to their camps, but for the men who have come, their perspectives have been altered in very positive ways as you will see in this video. Many more women come to the camps, just as women have led the way in advocating for breast cancer research, and in general reaching out via support groups. We have a lot to learn from them!

There are many support groups out there for prostate cancer survivors of all stages. Prostate Cancer Foundation has put a nice list together here. And if you would like online support for specific issues, Movember’s True North initiative has great articles to help you here.

The bottom line for me, having had a chance to “get back to camp”, is that we can all use a little encouragement to get out there and live again as we come out of our COVID isolation. I hope you will do just that this summer!

2 Comments

Filed under General Prostate Cancer Issues, Movember, Prostate cancer therapy, Uncategorized

Nex Gen Diagnostics and Treatment


To view this on my website, sign up for future posts, and search for previous topics, please click here.

When I was a fellow in Dr. David Livingston’s lab 40+ years ago, DNA sequencing had just become “widely” available, developed by Maxam and Gilbert. There was a brilliant MIT student, 16 years old as I recall, who visited the lab that summer and brought his TI calculator to the lab, assigning a number (1,2,3,4) to each of the bases and would go into David’s office with a string of numbers to look at. The evolution of that technology to what goes on today when you send in a saliva sample to 23 and Me is shown in the following video:

This video explains next generation DNA sequencing

With what seems (to an old guy like me) shocking speed, the human genome was unraveled and with it, all (most?) of the genes that control cellular processes including cancer. As I have recommended before in this blog, for a fabulous review of the story, I recommend you read “The Emperor of All Maladies” by Siddhartha Mukherjee.

Due to the power of DNA sequencing it is now possible to obtain DNA that originates in tumors and do sequencing of cancer causing genes directly from the blood stream or from the urine or other body fluids. This is a so-called “liquid biopsy“.

The entry of this technology into caring for cancer patients has also been incredibly rapid. At the present time, for prostate cancer, the NCCN patient guidelines are a great place to start learning about pca in general if you are new to the topic, but the physician NCCN guidelines are much more specific regarding what you need to know about your genetics. Here are the recommendations for “germline” testing, i.e. what you have inherited that may have pre-disposed you to develop prostate cancer and what might affect other members of your family including children or siblings:

The guidelines are also very informative about this testing being done with the help of professional genetic counsellors:

Genetic testing in the absence of family history or clinical features (eg, high- or very-high-risk prostate cancer) may be of low yield.
• The prevalence of inherited (germline) DNA repair gene mutations in men with metastatic prostate cancer, unselected for family history (n = 692), was found to be 11.8% (BRCA2 5.3%, ATM 1.6%, CHEK2 1.9%, BRCA1 0.9%, RAD51D 0.4%, and PALB2 0.4%). The prevalence was 6% in the localized high-risk population in the TCGA cohort (Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015;163:1011-1025; Pritchard CC,Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375:443- 453).

• Genetic counseling resources and support is critical and pre-test counseling is preferred when feasible, especially if family history is positive.

• Post-test genetic counseling is recommended if a germline mutation (pathogenic variant) is identified. Cascade testing for relatives is critical to inform the risk for familial cancers in male and female relatives.

https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf

However, as noted above, we can also sequence the tumor itself or look for mutations in tumor DNA that is circulating. The most important thing that may show up in these analyses is a mutation that can be specifically targeted with one of the newer drugs. Examples include the finding of a DNA repair gene mutation such as BRCA1 or BRCA2 in which case the use of a category of drugs called PARP inhibitors or platinum based chemotherapy might be an important consideration for patients who have failed hormone therapy. Thus, we now utilize DNA sequencing both in patients who have family histories for certain cancers, patients with metastatic disease, high risk disease, and again when there is progression of the cancer after hormone treatment stops working. Beyond these impacts of DNA sequencing are the many gene-based tests that have evolved that can help determine risk for finding prostate cancer on a biopsy, or predicting whether someone is at high or low risk for metastatic disease after a positive biopsy and Gleason score is known.

I tried to help understand the complexities of integrating all of these new tests and therapies in this blog. Although it may be difficult to keep up with this rapidly evolving landscape for both patients and physicians, there is no doubt that we have entered the “next gen” era of prostate cancer management. Finding an expert who focuses on pca and discussing some of the issues raised in this blog is key to taking advantage of what is being learned. Hopefully this blog will help you become a better informed member of your team in terms of the underlying technology. For a more erudite discussion of cancer precision medicine, you might read this newly posted discussion.

5 Comments

Filed under Uncategorized

CAR-T and related immunotherapies


To view this on my blog site, see other blogs, and sign up for notification of future posts, please click here.

One of your co-subscribers to this blog contacted me and asked if I would write a blog about CAR-T cells, and I have decided to include the closely related bi-specific antibody therapies. I am very intimidated by even attempting this, because the complexities of this field are daunting, so please do NOT show this post to your PhD immunologist cousin.

As most readers probably know, the immune system consists broadly of the “humoral” and “cellular” arms. When you get corona virus, (or any other virus) both arms are activated. Broadly speaking, your B-cells (lymphocytes that live in the lymph nodes and also circulate in your blood stream) make antibodies that attach to targets (“antigens” – in the case of corona virus, the spike protein you are tired of looking at on TV is the target antigen we hope a vaccine can be made from) and can inhibit the virus or can clear the antigen from your circulation. Antibodies consist of proteins (chains) that combine with each other and this is where things start getting VERY complex, but a single B-cell can make only one type of antibody (called a monoclonal antibody). Whether you know it or not, if you have an interest in prostate cancer, monoclonal antibody technology is “why you are here” – PSA detection was made possible by isolating a monoclonal antibody that would bind to Prostate Specific Antigen. But with modern recombinant DNA techniques, the chains that make up these antibodies can be combined in highly variable ways never found in nature. The history and complexity of the antibody story is illustrated here from this article. Screen Shot 2020-06-13 at 10.31.25 AM

The Y-shaped figure above is “an antibody” and the colored chains are the proteins in the antibody that can be extremely variable and give the antibody its ability to bind to any target. Note that the two arms of the antibody could be designed so that one arm would bind to one target and the other arm could bind to a different target. Voila! You could design one arm to bind to PSMA and another to a killer T-cell that would link a killer cell to your cancer cell.

Screen Shot 2020-06-13 at 10.42.33 AM

 This is the general idea behind an innovative cancer approach you may hear about called BiTE. In this figure, the working part of the tips of two “Y” antibodies have been linked and when injected into a patient, in theory the “killer” T-cell is forced to bind to the tumor cell via its “TAA” or tumor antigen. If you are a dedicated reader of this blog, you already are thinking about a great target antigen I previously introduced you to, PSMA

Now on to my VERY oversimplified description of CAR-T cells. The terminology refers to Chimeric Antigen Receptor – T cells. The science of these is related to the above description of antibodies in the following way: On the surface of the T-cells in your lymphocyte library is a completely different group of proteins that allow the T-cells to bind to and recognize antigens, much like the antibody system we discussed above. These proteins combine in chains on the surface of the cells to form “T-cell receptors”. Unlike the antibody system, their interactions with antigens are further modified by requiring recognition of “self”. Non “self” is why people who receive a kidney or heart transplant must receive drugs to suppress the immune system that will reject the transplant. Unfortunately cancer cells are mostly recognized as “self” so we don’t reject them. BUT… again using recombinant DNA technology, the T-cell receptors (TCR) can be re-designed so they DO recognize a tumor target, even though it is “self”. You can start with lazy, somewhat unresponsive T-cells that might be in the blood or even infiltrating a tumor, take them out, modify the receptor (dramatically as shown in the following figure), and force them to recognize a cancer, then re-infuse them into the patient like any blood transfusion.

Screen Shot 2020-06-13 at 11.02.34 AM

In the figure (taken from this article), the “antibody like” part of the receptor that controls “self” is CD3 and the “antibody like” part of the TCR receptor that binds to a tumor antigen or virus infected cell are the green proteins marked alpha and beta. The recombinant magic that is WAY beyond this blog is everything on the right. If you have the time and interest in really delving into CAR-T therapy for cancer, you really do have to read this article. But, for those who wonder “so why aren’t we doing this?”, the Cliff’s Notes answer is that (1) it is VERY expensive – each patient has to have his/her T-cells taken out and modified, expanded, then re-infused; (2) it has only worked well for blood cancers like leukemias so far; and (3) even though PSMA or some similar tumor target might be thought to be “tumor specific”, it turns out these targets are often expressed in low levels in places like your brain or lung. When the CAR-T cells begin attacking your normal tissues, you are in a world of hurt. If you have followed the COVID-19 story, you may have heard about the “cytokine storm” that is killing people by destroying their lungs. As you might imagine, combining these approaches with the other “hot” area of immunotherapy, the PD-1 inhibitors I have previously written about could make CAR-T treatment more effective but the toxicities even worse.

I hope this has been helpful and that your immunologist cousin or highly informed oncologist will forgive the effort to simplify a very promising but challenging field. I’m also grateful to the myriad of incredible researchers who have put this all together for us “cancer fighters” and their dedication is equally as worthy of honor as other warriors on front lines.

 

 

 

 

4 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment

PSMA PET-CT scans for Prostate Cancer


To view this on my blog site, search for other blogs of interest or sign up to be notified of future blogs, please click here.

PSMA stands for Prostate Specific Membrane Antigen, which is a protein (enzyme) that is expressed on the surface of prostate cancer cells (and on a few other cell types). As with many cell surface proteins, you can find ligands that will bind to the protein, and then label these with radioactive isotopes that allow imaging. PET stands for Positron Emission Tomography, and of course, CT stands for Computerized Tomography. When you put these technologies together, you obtain a powerful way to look for prostate cancer that has spread outside the prostate gland. The physics of this (how a positron interacts with an electron, releasing gamma photons at 180 degrees) is very cool, but probably of interest only to the most nerdy. (I made a cloud chamber for my 7th grade science project and my hiking buddy is a nuclear medicine doc who wrote a definitive text on the math/science of his craft…so go figure).

Prior to developing PET agents for prostate cancer, we had standard CT scans and bone scans and we used these to determine whether someone with, for example, a very high PSA or high Gleason score had cancer deposits that had escaped (metastasized) from the prostate. If so, it was felt that putting them through surgery or radiation treatments in an attempt to cure was fruitless and exposed the patient to the unnecessary toxicity risks (impotence, incontinence, rectal damage, etc.) Especially if they had symptoms (e.g. bone pain), hormone treatment reducing testosterone was the best approach. If you had a rising PSA several years after local treatment, the question was always, “Where is the cancer?” but the sensitivity of routine bone and CT scans was quite limited not showing anything until the PSA reached 10 or so at which time ~1/2 of scans would be positive. Screen Shot 2020-04-26 at 7.26.14 AMThis figure illustrates the difference in sensitivity. A normal sized lymph node on CT scan (left) is revealed to  contain prostate cancer with the PET isotope technique (right). At present, the only approved PET scan in the U.S. is fluciclovine, the “Axumin” scan, which the FDA approved for detecting cancer in patients with rising PSA, but not in newly diagnosed patients. In several studies PSMA-PET CT scans are even more sensitive (about 3x) than Axumin. At the risk of calling up an overused phrase, “this changes everything”.

First, it is clear that many high risk patients we would previously have treated with surgery or radiation to the prostate hoping to cure them might now be found to have prostate cancer deposits outside of the treatment target (prostate or prostate + pelvic lymph nodes). A superb study in this month’s Lancet found that PSMA PET-CT scans provided higher sensitivity (85% vs 38%) and specificity (98% vs 91%) than routine bone and CT scans in high risk patients (PSA >20, Gleason 4+3 or worse). Does this mean we shouldn’t treat the prostate in high risk patients with positive scans? In the study, conventional imaging changed the management in 15% of men, while PSMA PET-CT imaging changed the plans in 28% (p=0.008). Should all high risk patients have a PSMA PET-CT before deciding on treatment? Should the FDA approve this scan quickly? (It is currently available only in research centers and not covered by insurance…read my blog on how to search for such studies or click here).

Second, what about treating a small number of prostate metastases (oligometastatic prostate cancer) in a patient who was treated years ago and now has a rising PSA? Ongoing investigations suggest this might delay the need for hormone therapy in such patients or potentially even cure some of them. But the PSMA PET-CT isn’t perfect. How high do you let the PSA go up before ordering such a scan? – the farther it rises, the more likely the scan will show something, but that gives the cancer more time to spread. A negative scan is no guarantee there aren’t many more foci of a few prostate cancer cells that will eventually show up elsewhere in the body. Is this some version of Whack-a-mole? And how do we define “cure” anyway?? (My personal definition is that you die from something else, regardless of your PSA or scan results).

Finally, since even at research centers the PSMA PET-CT scan may cost you $3,000 or so, is it worth it? It is “free” in the European health care systems, but we all know nothing is free – even if Medicare pays for something it costs society and ultimately must be accounted for in terms of value. Medicare covered PSMA PET-CT’s vs fixing pot holes and bridges? How about finding a treatment for SARS Co-V2 instead? No easy answers, but if you are like me, homebound as a “high risk” senior citizen, plenty to think about. Wash your hands, wear your mask, and enjoy your grandkids on Zoom!

15 Comments

Filed under General Prostate Cancer Issues, Oligometastatic prostate cancer, Prostate cancer therapy, Targeted treatment

(Love) Advice in the time of (Cholera) Coronavirus


To read this on my blog site and sign up for future posts or search for previous posts, please click here.

I wanted the title to look like this, but the software wouldn’t let me: Love Advice in the time of Cholera Coronavirus. In any case, if you are a patient or in the patient age range of prostate cancer you are automatically at some increased risk. There isn’t much evidence that cancer patients in general who aren’t on chemotherapy or an immunosuppressive agent have much increased risk. In fact, patients on ADT may actually do a little better based on reactivation of thymic function. Here is a quote from this complex article by James Gulley and colleagues:

Analyses of these data suggest that AR expressed by thymic epithelium play an important role in thymocyte development, and could explain why androgens induce apoptosis of thymocytes in vivo but not in vitro (31). In subsequent studies, androgen withdrawal led to increased thymopoiesis and reversal of thymic atrophy in post-pubertal male mice (32) and even in aged mice (33, 34). Furthermore, thymopoiesis decreased with the administration of testosterone (35, 36). Castration also results in increased T- cell export in aged mice and increased naive splenic T cells compared to aged controls (34).

Although persistent thymic function is evident in older individuals, it is decreased, as demonstrated by lower TREC [T-cell receptor rearrangement excision circles] levels (37). However, studies show that ADT can induce thymic renewal in older individuals (38). In one study, elderly prostate cancer patients given GnRH-A experienced a notable increase in TRECs in 6 out of 10 cases, indicating renewed thymopoiesis (34). These studies suggest that the effects of androgen ablation are not limited to the young, as evidenced by restoration of thymic function and export of naïve T cells after surgical (orchiectomy) or medical (GnRH-A) castration.

 

The enhanced thymopoiesis associated with ADT has important clinical implications for the treatment of immunocompromised patients and for immunotherapy for prostate cancer (see Figure 3 for a summary of ADT’s effects on the T-cell compartment). Thymic renewal in these patients may increase the diversity of the T-cell repertoire, increasing the pool of antigens recognized by the immune system. In the setting of vaccine therapy, an increased naïve T-cell compartment may enhance the response to immunotherapy.

 A few patients have asked me about whether to postpone surgery. In general, for patients with “average” (Gleason 3+4) tumors, this would probably be OK. It is a harder decision for those with Gleason 4+3, or any component of Gleason 5. It will have to be an individual decision (as are all decisions of this sort) with your doctor. The same would apply to radiation therapy treatment which can have some immunosuppressive effects, but certainly has never been studied in this situation.

In general, I would also recommend that you put aside your political biases and listen to the scientific experts. I was disturbed by a poll presented this morning on Face the Nation that indicated a significant difference in the perceptions of risk between Republicans and Democrats. This virus does not know or care about your party or politics. Practice the social isolation being recommended by Fauci and the other experts: “We should be over-reacting to this…” It would be just fine to look back and say we did that.

If you want to delve further into the science of this (which also dispels a lot of misinformation about where the virus comes from and how it arose), you should certainly look at this presentation: http://www.croiconference.org/

And in case you haven’t been thoroughly inundated with advice or just came out from under a rock, here is the succinct list of expert recommendations:

  • Social Distancing to flatten the curve of the pandemic (reduce infectivity rate from >2 to <1):
    • Wash/sanitize hands frequently
    • If sick, do not go to work
    • Work from home if at all possible
    • Maintain your personal space when around others
    • Eliminate travel (don’t be fooled by cheap flights or hotels)
    • Reduce exposure to groups of people
    • COVID-19 can persist on hard surfaces for several days so wipe down frequent contact surfaces repeatedly
    • Recognize that social distancing will have some mental health implications so be especially compassionate

Stay home. Stay well. Here is a list of things to do:  Fun Free Time Activities_

2 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy

Thanksgiving for an oncologist


To read this blog on my blog site, search for previous topics, and sign up for future posts, please click here.

First, I want to thank those readers who generously helped me reach my goal of fundraising for the annual Movember effort to increase awareness and support research into prostate cancer and men’s health. If you are so inclined and want to make a last minute contribution, you may do so here: https://mobro.co/michaelglode?mc=1 My itchy, scraggly moustache is destined to come off tomorrow!

Second, it has been an incredible journey since my internship to watch the evolution of our understanding of cancer. In 1972, when my mother called to tell me (a young medical intern) she “had a little lump in her breast” – it turned out to be not-so-little, and she fought the disease for another 4 years before succumbing – we had little we could do other than surgery and in some cases radiation. Even adjuvant chemotherapy (the CMF treatment) had not been published yet. During the next decade, remarkable strides were made in finding new drugs, most notably cisplatin, that allowed cures of previously lethal diseases – especially testis cancer.

Then, while on sabbatical in Helsinki in 1986, I found an article to present at our journal club that I thought would revolutionize medicine. The PCR reaction opened the door to rapid DNA sequencing. When I returned to my lab in Denver, my PhD colleague, Ian Maxwell had already started to use the technique with his own jury-rigged thermal cycler, but it would be 3 or 4 more years until a medical student in his/her 3rd year clinical rotation would be able to tell me what PCR stood for. Recognizing there would be a generation of physicians who “missed out” on what would be the revolution, I was able to help start a catch-up course in Aspen, Molecular Biology in Clinical Oncology, that is still ongoing. As a “fly on the wall” I was able to listen to the world leaders in molecular oncology (including this year’s Nobel Prize winner, Bill Kaelin) describe their research that unlocked the mysteries of how cancer works. Fly-fishing with some of them on the Frying Pan was a bonus to be cherished!

As the cancer story unfolded, I was able to participate in many clinical trials, bringing new treatments that emerged to my patients. Thanks to the brilliant writing of Siddhartha Mukherjee, author of “The Emperor of all Maladies“, it became possible for my patients to begin to understand the nagging question, “how did this happen to me?” And now, this week, a brilliant article summarizing all we know about the genes and mutations that cause cancer has appeared in the New England Journal. I invite you to read that (it’s free online) if you want to join me in peering over the horizon to the future of cancer medicine. It is both overwhelming and humbling.

The privilege of living through the last half of the 20th century and into the 21st is one of the most amazing journeys one could ask of a human lifetime. As I ponder it, looking out on the snow I will get to ski on next week and enjoying my grandchildren and family, I am truly thankful to have been here. Happy Thanksgiving to all!

 

 

7 Comments

Filed under General Prostate Cancer Issues, Movember

Immuno-Fighting Cancer Like Wildfires


To read this on my blog site, sign up for future posts, and see other brilliant, insightful 😉 blogs, please click here.

I live in what is now known as the urban wildland interface west of Denver, the kind of area prone to the devastating fires that have been scorching California. Our firewise community efforts have taught us a lot about how a single windblown ember from miles away can destroy your house, and many of us have done a lot of mitigation. But, if the “big one” comes, our best hope is to grab the family albums and head down the hill.

Cancer can be very similar. If someone walks in with widespread disease, unless it is one of the highly treatable ones like testis cancer, flying over the patient with flame retardant (chemotherapy) may delay things for a while, but often the home is lost. The earliest realization of how to do better may have come from breast cancer. William Halstead realized in 1894 that putting out the fire effectively might include getting the surrounding “embers” (lymph nodes) at the time of removing the primary breast tumor (campfire in this analogy). A century later, it had become clear that in many instances the embers had spread too far for more radical surgical approaches, but that in some cases the embers could be extinguished (adjuvant chemotherapy) before the fire got out of control.

But what if the fire could be self-extinguishing? What if there was a boy scout at the campfire with a fire extinguisher? Better yet, what if you had smoke jumpers who could parachute in and help the boy by putting out the small fires elsewhere started by the embers? Immunotherapy offers just such hope. In the 1980’s we learned that giving high dose IL-2 to some patients with particularly sensitive tumors (kidney, melanoma) could produce cures in some cases. I liken this to sending in a group of non-specialist firemen/women in huge numbers to fight the forest fire doing the best they can.

Sending these individuals to more specialized training resulted in Provenge (sipuleucel-T), the first “vaccine” approved for treating any cancer, prostate being the target, and I was fortunate to participate in some of the first trials of this approach. But what was needed was both more effective equipment (in this case the PD-1 inhibitors that can “extinguish” the cancer’s ability to turn off the immune response) and more highly trained firefighters (potentially think of CAR-T cells) who have advanced skills, graduate degrees from a university, and can be deployed to go in search of the embers.

Now to torture this analogy just a bit further, let’s imagine that rather than sending the firefighters to universities for advanced generalized training, we could send them to CIA camps where they would receive the most specialized training possible right at the site where the fire started. In cancer, this may be the idea of using cryotherapy or irreversible electroporation to kill the local tumor, then injecting some cocktail of immune stimulatory molecules that enhance the body’s ability to create very effective T-cells that can go out as smoke jumpers looking for the embers (metastases), without the need for the university training outside the body (Sip-T or CAR-T).

Screen Shot 2019-11-11 at 8.13.35 AM

Already there are clinical trials underway with this technique that show promise. Gary Onik has demonstrated some remarkable responses in metastatic prostate cancer patients. Diwakar Davar just presented similarly exciting data in high risk melanoma patients who received intratumoral CMP-001 and systemic nivolumab before resection of the primary tumors. 62% of the patients had no tumor left in their surgical specimens! So  the cancer/firefighters are out there and although there will always be wildfires we simply can’t extinguish, the prospects for controlling them before or soon after they have spread have never looked better.

 

3 Comments

Filed under General Prostate Cancer Issues, Targeted treatment

[How to] Choose Your Own Adventure


To view this on my blog site, sign up for future posts, and find other essays, please click here.

Back when Al Gore and I invented the internet (just kidding…but it does seem like a long time ago – before twitter, instagram, and all the rest), I had the privilege of helping my professional society create its first website, ASCO Online. As part of that effort, I wrote an introductory article to assist my colleagues in understanding what I felt lay in the future. In addition to trying to explain how browsers and the internet worked (as an amateur early adopter), I stated, “Oncologists will increasingly act as information guides rather than information resources for patients and their families with cancer.”

Herein, I will attempt to make that easier for you if you have a personal interest in prostate cancer. There are now more than 103 million “hits” in a google search for “prostate cancer”. Therefore, first understand your condition. If you are thinking about screening, put that in your search term, or read this article I selected for you.

Next, be familiar with the myriad of terms that have evolved to describe different situations (“states”, “stages”, “conditions” etc.) to describe the disease. “Localized” means you have prostate cancer that is felt to be (or even proven to be after surgery) confined to the prostate. If localized, is it high risk, intermediate risk, or low risk? Your physician should be able to help you understand this based on the Gleason score, pathology findings, and PSA, but there are now multiple molecular tests that can be done to help further characterize what has been found. There is an excellent article to help you understand these here. If you haven’t had surgery or radiation, and are just deciding what to do, some of these tests can be done on your biopsy. I once wrote a blog about the challenging decision of choosing a method of primary treatment that is still relevant here.

However to be really up to date, you may wish to look at the research going on for any of the more advanced prostate cancer conditions. For this, you should become familiar with and use the NIH website, Clinicaltrials.gov. To help you with this, I have done some preliminary searches for different conditions, but recognize that the terms you enter change what you see, so regard this as just a start. Pick your condition, and click on it and you will find some trials that are ongoing (I preselected “recruiting”) for some common situations. If you don’t see your situation, play with the search terms yourself.

High risk after surgery based on pathology
Rising PSA (biochemical failure) after surgery or radiation
Known metastatic disease (spread to bones or nodes on scans) never previously treated
Rising PSA or new metastases on scans while on hormone therapy

Now, taking the last example which gave links to 160 studies, you can narrow the search results by using the pull down menu on the search screen, starting with country. Note that limiting to the U.S. drops the available trials from 160 to 93. Adding the state, Colorado, drops it to 14 studies, etc. Maybe you have a relative in a certain city or state you could visit if a trial fits your situation. If you would like to look only at immunotherapy trials, try entering the term, “immunotherapy”.

Next, let’s go further into one trial. Let’s say we are interested in the NIH immunotherapy trial being conducted at the NCI. If you scroll down, you can see what will be involved:

Screen Shot 2019-10-05 at 12.48.14 PM

Next, since the devil is in the details, you need to know if you are eligible for this trial. Continue to scroll down to the Eligibility Criteria section. Here you find what clinical conditions you MUST have (Inclusion Criteria) or MUST NOT have (Exclusion Criteria).

At this point, you should understand how it would be almost impossible for your physician to stay up on all of the trials. YOU are now the “information guide” and if you are interested in whether a certain trial (or even an approach you have found that might be something you could do outside of a trial) could be useful in your case, you should make an appointment to speak with your doctor about the trial/approach. Recognize that this will probably take more time than your “usual visit” and notify the clinic you will want extra time to discuss this. Print out the relative parts of the trial so you can show it to her/him, and ideally have your meeting in an exam room with an internet-connected computer so you can search through details together. If there are questions, each trial has the phone number for a contact person (typically a research nurse), and since your physician may be able to answer questions you would have trouble finding in your record, this phone call is best made together from the exam room.

In our fast-moving, internet-enabled era of medicine, this is how I think medicine should be practiced. The shared burden of “keeping up” means the patient has to do his (no women have prostate cancer) or her (if you are a supportive spouse or similar) own research, help the doctor, and work on approaches as a team. Being respectful of the time involved is critical, but it CAN work. And it is much more rewarding than keeping up with tweet storms!! And if this is “not for you”, find a grandchild and choose some different adventures here. (disclaimer: I have never done this, but looks like it could be fun)

 

 

 

 

 

 

 

5 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Uncategorized

Here’s your prognosis…


To read this on my blog site, sign up to be notified of future blogs, and search for past essays on a variety of prostate cancer topics, please click here.

Bill Farwinkle (a fictional patient) and his wife Judy are seated in two chairs in the exam room as I enter, introduce myself, and take a seat in front of the evil, glowing screen that often dominates physician/patient interactions these days. I have read through the urologist’s excellent intake notes as well as those from the radiation oncologist he saw earlier in the week. It is clear that he has been told most, if not all, of the information about his options for treating a Gleason 4+3 cancer found in 6/12 cores, plus the suspicion of a solitary metastasis in his left ilium. So, I start by asking him to tell me about his goals for today’s visit. As soon as it is convenient in the visit, I move the conversation to what he enjoyed about his import business and what he is doing with his retirement, and from there, just let them ask the questions he or Judy are most concerned about. It takes an hour more or less.

These intimate encounters are the raison d’être of my 4 decades of medical practice. Trying desperately to keep up with the molecular biology of how a loss of PTEN or the presence of a mutation in one of the many DNA damage repair genes, never mind any of the multigene panels that could be ordered, hovers over each encounter as I ponder my role in helping an individual navigate a frightening diagnosis or a change in his clinical picture. Before reading any further in this post, I hereby assign you (as is my duty, being a professor after all…) this reading assignment: “Don’t Tell Me When I’m Going to Die” (You need to click on that title and read the short article before continuing).

The promise of “precision medicine” is all the rage currently. For example, in this week’s NEJM there is an article on re-adding the clinical risk parameters to the 21-gene recurrence score now in standard use for certain breast cancer patients. In the accompanying editorial, Hunter and Longo (discussing the complexities imposed by combining clinical and genomic attributes) state, “Within these groups, both physicians and patients will have to face substantial uncertainty, and ‘educated guesses’ informed by multiple sources of evidence as well as by clinical acumen will continue to be necessary even in the age of precision medicine…”

And so, when “Mr. Farwinkle” looks me in the eye at the end of our hour and says, “I suppose you know what I’m going to ask next…” I’m fully prepared to do my best, but in my heart I realize that medicine remains an art. Does he realize that his parents’ longevity, his smoking history, his cholesterol and blood pressure, and his willingness to exercise may play as much a role as the Gleason score or any genomic tests? “How long have I got, doc?” The question hangs there as I ponder how to answer.

We all share the same prognosis: Our time is fleeting, “threescore and ten, I remember well” as Shakespeare quotes in Macbeth. How to factor in the possibility that enzalutamide or abiraterone, a PARP inhibitor, or even an immuno-oncology agent that blocks the PD-1 pathway may affect this truth by a few months or even a year or two is on the one hand hopeful, and on the other, probably irrelevant. If only I could be as eloquent as Paul Kalanithi, the author of “When Breath Becomes Air“. In his original submission to the NY Times, when he was discussing coming to grips with his own cancer diagnosis, he stated, “What patients seek is not scientific knowledge doctors hide, but existential authenticity each must find on her own. Getting too deep into statistics is like trying to quench a thirst with salty water. The angst of facing mortality has no remedy in probability.”

And so I answer the Farwinkles. “I think you are going to be fine. Regardless of your decision as to what therapy we choose, you are likely to have a good outcome initially for several years, and I will be here for you. We can get through this together and we will take great care of you. But just as I have to remind myself, every day is a gift and we should live it like there won’t be unlimited tomorrows.”

Nothing has really changed for him. Or for me. I look forward to getting to know this family better…

 

8 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy