Tag Archives: cancer cells

CAR-T and related immunotherapies


To view this on my blog site, see other blogs, and sign up for notification of future posts, please click here.

One of your co-subscribers to this blog contacted me and asked if I would write a blog about CAR-T cells, and I have decided to include the closely related bi-specific antibody therapies. I am very intimidated by even attempting this, because the complexities of this field are daunting, so please do NOT show this post to your PhD immunologist cousin.

As most readers probably know, the immune system consists broadly of the “humoral” and “cellular” arms. When you get corona virus, (or any other virus) both arms are activated. Broadly speaking, your B-cells (lymphocytes that live in the lymph nodes and also circulate in your blood stream) make antibodies that attach to targets (“antigens” – in the case of corona virus, the spike protein you are tired of looking at on TV is the target antigen we hope a vaccine can be made from) and can inhibit the virus or can clear the antigen from your circulation. Antibodies consist of proteins (chains) that combine with each other and this is where things start getting VERY complex, but a single B-cell can make only one type of antibody (called a monoclonal antibody). Whether you know it or not, if you have an interest in prostate cancer, monoclonal antibody technology is “why you are here” – PSA detection was made possible by isolating a monoclonal antibody that would bind to Prostate Specific Antigen. But with modern recombinant DNA techniques, the chains that make up these antibodies can be combined in highly variable ways never found in nature. The history and complexity of the antibody story is illustrated here from this article. Screen Shot 2020-06-13 at 10.31.25 AM

The Y-shaped figure above is “an antibody” and the colored chains are the proteins in the antibody that can be extremely variable and give the antibody its ability to bind to any target. Note that the two arms of the antibody could be designed so that one arm would bind to one target and the other arm could bind to a different target. Voila! You could design one arm to bind to PSMA and another to a killer T-cell that would link a killer cell to your cancer cell.

Screen Shot 2020-06-13 at 10.42.33 AM

 This is the general idea behind an innovative cancer approach you may hear about called BiTE. In this figure, the working part of the tips of two “Y” antibodies have been linked and when injected into a patient, in theory the “killer” T-cell is forced to bind to the tumor cell via its “TAA” or tumor antigen. If you are a dedicated reader of this blog, you already are thinking about a great target antigen I previously introduced you to, PSMA

Now on to my VERY oversimplified description of CAR-T cells. The terminology refers to Chimeric Antigen Receptor – T cells. The science of these is related to the above description of antibodies in the following way: On the surface of the T-cells in your lymphocyte library is a completely different group of proteins that allow the T-cells to bind to and recognize antigens, much like the antibody system we discussed above. These proteins combine in chains on the surface of the cells to form “T-cell receptors”. Unlike the antibody system, their interactions with antigens are further modified by requiring recognition of “self”. Non “self” is why people who receive a kidney or heart transplant must receive drugs to suppress the immune system that will reject the transplant. Unfortunately cancer cells are mostly recognized as “self” so we don’t reject them. BUT… again using recombinant DNA technology, the T-cell receptors (TCR) can be re-designed so they DO recognize a tumor target, even though it is “self”. You can start with lazy, somewhat unresponsive T-cells that might be in the blood or even infiltrating a tumor, take them out, modify the receptor (dramatically as shown in the following figure), and force them to recognize a cancer, then re-infuse them into the patient like any blood transfusion.

Screen Shot 2020-06-13 at 11.02.34 AM

In the figure (taken from this article), the “antibody like” part of the receptor that controls “self” is CD3 and the “antibody like” part of the TCR receptor that binds to a tumor antigen or virus infected cell are the green proteins marked alpha and beta. The recombinant magic that is WAY beyond this blog is everything on the right. If you have the time and interest in really delving into CAR-T therapy for cancer, you really do have to read this article. But, for those who wonder “so why aren’t we doing this?”, the Cliff’s Notes answer is that (1) it is VERY expensive – each patient has to have his/her T-cells taken out and modified, expanded, then re-infused; (2) it has only worked well for blood cancers like leukemias so far; and (3) even though PSMA or some similar tumor target might be thought to be “tumor specific”, it turns out these targets are often expressed in low levels in places like your brain or lung. When the CAR-T cells begin attacking your normal tissues, you are in a world of hurt. If you have followed the COVID-19 story, you may have heard about the “cytokine storm” that is killing people by destroying their lungs. As you might imagine, combining these approaches with the other “hot” area of immunotherapy, the PD-1 inhibitors I have previously written about could make CAR-T treatment more effective but the toxicities even worse.

I hope this has been helpful and that your immunologist cousin or highly informed oncologist will forgive the effort to simplify a very promising but challenging field. I’m also grateful to the myriad of incredible researchers who have put this all together for us “cancer fighters” and their dedication is equally as worthy of honor as other warriors on front lines.

 

 

 

 

4 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment

Thanksgiving for an oncologist


To read this blog on my blog site, search for previous topics, and sign up for future posts, please click here.

First, I want to thank those readers who generously helped me reach my goal of fundraising for the annual Movember effort to increase awareness and support research into prostate cancer and men’s health. If you are so inclined and want to make a last minute contribution, you may do so here: https://mobro.co/michaelglode?mc=1 My itchy, scraggly moustache is destined to come off tomorrow!

Second, it has been an incredible journey since my internship to watch the evolution of our understanding of cancer. In 1972, when my mother called to tell me (a young medical intern) she “had a little lump in her breast” – it turned out to be not-so-little, and she fought the disease for another 4 years before succumbing – we had little we could do other than surgery and in some cases radiation. Even adjuvant chemotherapy (the CMF treatment) had not been published yet. During the next decade, remarkable strides were made in finding new drugs, most notably cisplatin, that allowed cures of previously lethal diseases – especially testis cancer.

Then, while on sabbatical in Helsinki in 1986, I found an article to present at our journal club that I thought would revolutionize medicine. The PCR reaction opened the door to rapid DNA sequencing. When I returned to my lab in Denver, my PhD colleague, Ian Maxwell had already started to use the technique with his own jury-rigged thermal cycler, but it would be 3 or 4 more years until a medical student in his/her 3rd year clinical rotation would be able to tell me what PCR stood for. Recognizing there would be a generation of physicians who “missed out” on what would be the revolution, I was able to help start a catch-up course in Aspen, Molecular Biology in Clinical Oncology, that is still ongoing. As a “fly on the wall” I was able to listen to the world leaders in molecular oncology (including this year’s Nobel Prize winner, Bill Kaelin) describe their research that unlocked the mysteries of how cancer works. Fly-fishing with some of them on the Frying Pan was a bonus to be cherished!

As the cancer story unfolded, I was able to participate in many clinical trials, bringing new treatments that emerged to my patients. Thanks to the brilliant writing of Siddhartha Mukherjee, author of “The Emperor of all Maladies“, it became possible for my patients to begin to understand the nagging question, “how did this happen to me?” And now, this week, a brilliant article summarizing all we know about the genes and mutations that cause cancer has appeared in the New England Journal. I invite you to read that (it’s free online) if you want to join me in peering over the horizon to the future of cancer medicine. It is both overwhelming and humbling.

The privilege of living through the last half of the 20th century and into the 21st is one of the most amazing journeys one could ask of a human lifetime. As I ponder it, looking out on the snow I will get to ski on next week and enjoying my grandchildren and family, I am truly thankful to have been here. Happy Thanksgiving to all!

 

 

7 Comments

Filed under General Prostate Cancer Issues, Movember

Black holes and genetic laws


To read this on my blog site, see previous essays and sign up for future posts, please click here. (Also, please note that all of the hypertext links I put in these articles are hopefully enticements to help you expand on the ideas – try a few)

I just finished reading Stephen Hawking’s last book, Brief Answers to the Big Questions, which I found more accessible than A Brief History of Time, written more than 30 years ago. Hawking’s abilities to explain the very (for me) abstract concepts of how no information can flow out of black holes and that the amount in there is somehow directly related to the cross sectional area of the hole was satisfying. As a very math challenged individual, I’m also a fan of Heisenberg and the perplexing issue that in the quantum/wave world of particle physics, you just can’t be certain about position and momentum. Yet, there are certain laws, like the speed of light, that are never violated, at least in the universe we live in.

So what does this have to do with genetics and prostate (or other) cancers? Here is a law: A always pairs with T, and C always pairs with G. In our biologic universe, without this law, no life as we know it could exist (prions may be an exception, but that gets too far into the definition of “life”). Yet, just as with the uncertainty of Heisenberg, the base pairing in DNA/RNA is not completely inviolable. Mistakes are made…and this can result in cancer. Cancer is a genetic disease and for anyone who hasn’t read it, I still recommend you avail yourself of the incredibly well written book, The Emperor of All Maladies. In the short time since that book was written, the explosion in our understanding of how genetic errors and cancer are related has been difficult to keep up with. The Cancer Genome Atlas (clever name, eh?) is but one example, and its use by scientists skilled in math (ugh) continues to help classify cancers based on how their mutations drive them rather than just how they look under the microscope or which organ they started in. Here is the math and the results one such analysis has on predicting survival for stomach cancer:

Screen Shot 2019-03-09 at 10.14.33 AM Screen Shot 2019-03-09 at 10.22.35 AM

As you can see, the prognosis and potentially the treatment for one subtype of “stomach cancer” might be very different for one patient than for another. Bringing this technology to prostate cancer, we already know the mutational landscape is vast. For example, this article looked at 1,013 different prostate cancers and found 97 significantly mutated genes, including 70 not previously recognized, and many present in <3% of cases. There is hidden good news in this story, in that the same mutational uncertainties that can give rise to cancer (breaking the law of AT-CG) also allows our immune systems to react to the novel mutated proteins that cancers now display. For an interview from this week’s NEJM on gene editing, click here.

Keeping up with this world of laws, broken laws, and “black holes” will be a remarkable challenge for patients and oncologists alike. My final recommendation for reading about this is a terrific article you can find here by George Sledge, one of the outstanding leaders in our field. He notes that even the most skilled oncologist, paired with the smartest of patients, will be unable to keep up. But remember this, you can’t go faster than the speed of light. That’s the law!

 

 

4 Comments

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment

Ho, Ho, Hox


To read this on my blog site, see other posts, and sign up for future notifications, please click here.

Fruit flies are a fascinating scientific resource to consider if you can get beyond your annoyance when they appear in one of those lovely boxes of ripe fruit you receive from a relative this time of year. (Just be thankful it wasn’t fruitCAKE!). For some great reading on the topic, I highly recommend a book, “Time, Love, and Memory“, the story of Seymour Benzer and how his graduate students figured out how different genes are involved in these creatures’ sense of time, or how they do their mating dance or remember whether they shouldn’t put their little leg down into a beaker and get a shock.

As with their behavior, there are wonderfully complex genes that also control how they develop from a single fertilized egg into an adult fly. These are called homeobox or “Hox” genes and it turns out their analogues are conserved throughout the animal kingdom. In this nice review of their functions, the following picture shows how the gene family controls development in the anterior – posterior development of the fly AND the mouse embryo.

Screen Shot 2018-12-15 at 3.29.21 PM

Screen Shot 2018-12-15 at 3.39.27 PMWhen things go wrong in the fruit fly (Drosophila), you can get a fascinating mutation that makes the fly look like this, with legs appearing where there should be antennae. In humans, analogous mutations can result in having extra fingers or malformations. You can read in more depth about how the Hox (a subset of the master homeotic regulator) genes are regulated at the Kahn academy in this article.

OK, you say, but what could this possibly have to do with prostate cancer? Ah, that’s what I find fascinating. Cancer is a superb example of dysregulation of the genetic programs that make cells behave. By the time you get to an animal developing a prostate gland, there are countless regulatory genes that must each turn on or off at the right time in embryogenesis. And just as “ontogeny recapitulates phylogeny“, oncology recapitulates ontogeny. One of these homeobox genes, HOXB13 was discovered to be mutated in studies of families with hereditary risk for prostate cancer by Johns Hopkins investigators several years ago. This gene interacts with the androgen receptor, so it makes some sense that the prostate gland would be affected by mutations. Further studies of families with this mutation indicate that if you inherit one copy of the G48E mutation, your risk of developing prostate cancer is 2.6 fold increased.

Whereas testing for such genetic mutations (and many others) used to be the provenance  of research labs, we are entering a time in medicine when genetic testing is becoming “mandatory” for best practice care. The following criteria are now used to help discern who might benefit from such testing:

Screen Shot 2018-12-15 at 4.07.50 PM

This table comes from a company, Myriad, that is now advertising for its own cancer risk gene panel, but there are several such companies and panels of genes. Although we (I) still don’t send off a genetic panel test to Myriad, Foundation Medicine, Invitae or the other companies in all patients, we are rapidly approaching the time when that will be standard. The challenges (as outlined in this article) are which genes should be tested, and what to do with the results. Some mutations such as those involving DNA damage repair, are already recognized as useful in directing therapy. For now, it is a topic best discussed with a genetics counsellor, and I fear, even more importantly one with an interest in prostate cancer if you can find one. Most of us physicians are struggling to keep up with which panel (if any) to order and when to order it.

So just remember when you see that little fly emerge from your fruit box this season, he/she/it has made immeasurable contributions to cancer research, and be thankful for all the science that is helping us to understand our amazing world.

 

 

1 Comment

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment

The Hits Just Keep on Coming


To view this on my blog site and sign up to receive notifications of future posts, please click here.

I have a hiking companion who loves math, computers, and to a large extent, eugenics. He posits that we will eventually understand the human genome so well that we will be able to make all humans “smart” or “better” through genetic engineering. I argue back endlessly, with little success, that his definition of “smart” and “better” may not be shared  by everyone (he counters that these definitions will be left to the parents…) and that there will be unintended consequences of diving into our DNA with CRISPR/Cas9 technology.

The wonderful complexity of humankind is, of course, reflected in every single cell in our bodies and in all of our cancer cells as well. The debate over the number of synapses (or permutations) in our brains versus atoms (or stars etc.) in the observable universe is well beyond my comprehension. Unfortunately the “much simpler” question of how many things go wrong in cancer cells is also mind boggling. Hence, the phenomenal work of one of the West Coast Dream Team’s recent publications is not surprising. A reductionist view is shown in this diagram from their paper published last month:

Screen Shot 2018-08-05 at 2.01.08 PM

The scientific team, using funds from PCF, SU2C, and Movember (among others), did a whole genome analysis of metastatic tumor specimens from 101 men with castration resistant (hormone insensitive) prostate cancer. There is an excellent report on this work from the UCSF News Center here. Lest you believe that the results have resulted in an “aha moment” that will lead to “A prostate cancer cure”, you might do as I had to do and Google the word I had not heard of in the above figure, “chromothripsis“. Rather, the research leads to some very important insights that will doubtless contribute towards more effective therapy for 1000’s of patients eventually. By looking at the structural variants in the DNA that occurs outside of expressed genes, a much more complex picture of what drives castration resistant prostate cancer (CRPC) becomes evident. For example the androgen receptor (AR) is over-expressed in the majority of metastases and this study found a region of the “junk DNA” (non-coding for genes) that lies 66.94 million base pairs upstream of the AR that was amplified in 81% of the cases. This was 11% more common than the amplification of AR itself – an indication of how important the DNA controlling a gene like AR is, compared to the gene itself. So much for calling the DNA that doesn’t code for a protein “junk”!

A second example is the insight into patients who have alterations in a gene called CDK12 that may render them more sensitive to one of the “hottest” areas of cancer research, the use of checkpoint inhibitors of the PD-1 pathway I described in my last post.  This abnormality results in the cancer cells having an increased number of “neoantigens” (targets) for the immune system to attack as shown in this illustration from another recent exceptional paper.

Screen Shot 2018-08-05 at 2.27.16 PM

The ongoing research from the many scientific teams focused on prostate cancer is awe-inspiring when you consider the complexities involved in the two figures in this post alone. Even getting a complete picture from a single patient is impossible, given the genetic instability and the variable mutations found in different metastases. Remember, this team looked at the DNA from only one (or a few) of the many metastatic sites found in each patient. Other studies have shown lots of different mutations depending on which site is evaluated as I reviewed here.  In spite of all of this complexity, the ability to at least begin to understand what is going on “underneath the hood” is the way forward, and just as we can recognize Fords vs Chevys vs Toyotas, “brands” that emerge from such studies will lead to treatments that are more appropriate for certain classes of patients. As we have known for a very long time, the most common feature is the “gasoline” of testosterone, and how it fuels the amplified AR has remained an effective target for the newer drugs like abiraterone, enzalutamide, and apalutamide. Perhaps studies such as this one will lead to a way of kinking the hose upstream of the gasoline nozzle, or throwing sand (immunotherapy) into the engine itself. But… to admit that we will never understand it all (or design the “perfect human”) still seems an appropriate expression of humility to me.

4 Comments

Filed under General Prostate Cancer Issues

The billionaire cancer researcher


To read this blog on the website where you can find my other blogs and sign up to receive emails, click here.

Several patients/friends told me this week about the 60 Minutes piece highlighting the ongoing efforts of Patrick Soon-Shiong, a surgeon who was involved in the development of abraxane and has become worth $11B as a result. So I did my duty and watched on the Internet tonight and will share my thoughts with you loyal followers. Let it first be said that the optimism in this video is compelling, and for the most part based on science that has been going on for the past decade or so in labs all over the country. The 60 Minutes team working with Dr. Soon-Shiong highlighted in a visually compelling, and mostly understandable way, the progress that is being made using the latest technology and understanding of cancer biology. I will highlight this as follows: 1) massive computer technology and sequencing advances allow “all” of the mutations that characterize a cancer cell to be displayed. 2) Drug development to attack vulnerable biologic pathways within cancer cells is accelerating. 3) The possibility of finding the gene mutations driving these cells by looking at circulating tumor cells portends a [mostly] promising way of sampling what is going on within a patient, yet not having to biopsy the tumors. 4) The recent breakthroughs in enhancing immune responses to tumors by shutting down the innate immune checkpoint controls appears to offer great promise for “wiping out” residual/resistant tumor cells.

With that summary, let me urge anyone who watches/watched the video to pay close attention to my good friend, Derek Raghavan’s commentary. Derek is one of the most insightful and honest translational medical scientists I know. In essence, he points out that although Dr Soon-Shhiong is applying an “all of the above” approach to the attack on cancer, there will still be enormous amounts of work to be done and thereby hints at the problem I have  with the video – overselling hype/hope is a specialty of the media. Presenting the single patient with pancreatic cancer who is doing well is an example of this focus on the “sizzle and not the steak” approach. I take nothing away from what a billion dollars can do to pull the existing technologies together and applaud Dr. Soon-Shiong’s efforts. As a matter of fact, one of the techniques he touches on, using low continuous doses of chemotherapy, is something we may have been the first to try in prostate cancer several years ago and published here.

So what are the cautionary issues? 1) The sheer number of mutations found in most cancers (and perhaps especially prostate cancer where the term “shredding of the genome” has been used, make attacking ALL of the pathways at once nearly impossible.  If even one cell can further mutate in the face of having, say 6 or 7 drugs being given to shut down the mutations, it will survive to become the dominant and lethal metastatic problem. This is layered onto the challenge of using “all 6 drugs” together, which will more than likely compound the toxicities to the host when compared to using one of them at the optimal dose. 2) Tumor heterogeneity. In an incredible tour-de-force, a team of scientists at the Cancer Research UK London Research Institute  did whole genome analysis of the original kidney cancer in four patients as well as in their metastases. The graphic of how the research was done is shown here:

Screen Shot 2014-12-10 at 10.23.28 PM

Each spot in the original tumor as well as each metastasis had a somewhat unique set of mutations. Thus “personalized medicine”, the favorite buzzword of the moment in medicine, has a huge challenge in cancer, since there might be different combinations of drugs required for each metastatic site in some patients. The same might apply even for the evaluation of individual circulating tumor cells of course, which is now possible. A cell coming into the research syringe at one time might reflect a tumor deposit in one area, while the next cell isolated could be coming from somewhere else. 3) The excitement over using the most clever of the immune approaches, including the checkpoint inhibitors and the CART cell approach have significant challenges, either because of unleashing autoimmunity, or the very high costs of manipulating each individual patient’s T-cells in order to come up with the autologous cancer-fighting cell treatment.

So, here’s to the optimism and billionaire strategies, and we all hope it moves forward quickly and successfully. And here’s to 60 Minutes for highlighting the amazing biology and progress that is being made. Hope is one of the keystones of human progress, whether it is landing on Mars or repairing a broken relationship. Love and hope are what make life worth living. May your holiday celebrations be filled with both!

7 Comments

Filed under General Prostate Cancer Issues, Uncategorized