Pills vs Shots for Androgen Deprivation Therapy (ADT)

To view this post on my blog site, see other essays, and sign up for future posts, please click here.

My own interest in prostate cancer began with what, in retrospect, seems quaint and naive. When I arrived at the University of Colorado in 1978, as the first board certified medical oncologist, there were very few clinical trials underway. Having trained (at DFCI) with teams of researchers, my philosophy had evolved to the thought that “every patient should be treated on a protocol, and there should be a protocol for every patient”. This idea (in academic centers, at least) is how we make progress in treating cancer. I continue to urge every patient to participate in clinical research whenever possible, recognizing that for reasons of geography, convenience, or eligibility, it may not be possible. Clinicaltrials.gov lists all of the ongoing clinical research trials for patients and physicians, a dramatic advance in keeping everyone informed. You can learn how to use this tool in one of my previous blogs, here.

With few clinical trials going on at our cancer center, I wrote a naive letter to a number of pharmaceutical companies asking if they had any drug development trials that I might participate in. A single company, Abbott, wrote back inviting me to Chicago to discuss “Abbott 43-818”. This drug was an analog of gonadotropin releasing hormone, GnRH, a peptide (10 amino acids in this case) that looks like this: Pyr-{His}{Trp}{Ser}{Tyr}{Gly}{Leu}{Arg}{Pro}{Gly}-NH2. The 43-818 analog came to be known as leuprolide, and I had the opportunity to participate in taking it all the way from the first dose in men to a final clinical trial resulting in its approval as Lupron™. I’ve been caring for prostate cancer patients and doing clinical trials in prostate cancer ever since – fate!

The way Lupron™ works is shown in the figure below. Normally a part of your brain called the hypothalamus (1) releases a “pulse” of GnRH several times/hour. The peptide travels to the pituitary gland (2) and lands on cells called gonadotropins, causing them to release hormones LH and FSH that travel to the gonads (4) where the ovaries release estrogen or the testes release testosterone. Leuprolide interrupts this process by “over stimulating” its receptor on the pituitary cells and they turn off their LH/FSH production. Because of the small and relatively simple peptide sequence 100’s of other analogs have been made, and the molecular interactions with the receptor have been extensively studied. Some are agonists (like leuprolide/Lupron™/Eligard™, or goserelin/Zoladex™ and others are antagonists (degarelix/Firmagon™).

The hypothalamic-pituitary-gonadal axis

After a long research path, an oral antagonist (relugolix/Orgovix™) has now been synthesized, tested, and approved for treating prostate cancer. It is not a peptide, has the advantage of not having to be injected, and may be safer in patients with a cardiac history. The HERO trial evaluated 934 prostate cancer patients, 2/3 of whom received relugolix and 1/3 received leuprolide. As expected (based on the history of antagonists research), relugolix resulted in more rapid reduction in testosterone, faster recovery upon discontinuation, and faster reduction in PSA.

The frequency of the common bothersome side effects, hot flashes and fatigue, was similar. More patients on relugolix (12.2%) had diarrhea than those on leuprolide (6.8%). However, the leuprolide treated patients had more serious cardiovascular events (myocardial infarction, central nervous system hemorrhages and cerebrovascular conditions, or death from any cause), especially if they had a cardiac history. The incidence was 6.2% in the leuprolide group vs. 2.9% in the relugolix group.

All things being equal, use of relugolix would seem to be a superior choice for ADT in prostate cancer patients. However, as usual, “all things” may not be equal. First, while the biology above may seem to favor the antagonist, there are no data on whether this affects survival or time to progression of prostate cancer. The biology of reducing testosterone as the mainstay of treatment has not changed – we are attacking the same target: testosterone stimulation of prostate cancer cells. Indeed, the more rapid recovery of testosterone upon discontinuation of therapy (for example in a patient who receives several months of relugolix in combination with radiotherapy) might result in better quality of life with rapid recovery, but have a higher rate of recurrence due to the shorter overall duration of ADT treatment. Some patients will prefer pills to shots. On the other hand, insurance coverage for injections might be much better than that for an oral medication. The internet reported cost for a month of relugolix is reported to be $2313. The cost for a one month leuprolide dose is around $1700. However, the cost of a myocardial infarction is not insignificant, and thus comparison of one form of treatment vs another is always more complex than it initially seems.

I am writing this because I suspect there will be “news” articles and other advertising efforts for “Orgovyx™” in coming weeks/months and I hope to refer my patients to this article (and all the other ones I write). If a newly diagnosed patient has impending spinal cord compression, or major organ involvement or a history of cardiac disease, I would recommend the antagonist (relugolix/Orgovyx™) over the agonists (like leuprolide/Lupron™/Eligard™ or goserelin/Zoladex™). If a patient is already on one of those agonists, is doing well and has no cardiac history, there is probably no reason to change therapy. For a patient who is about to start therapy, I will discuss the options, and am happy to prescribe either an agonist or antagonist – it may well depend on insurance issues for a given patient. As with the Covid vaccine, the scientific progress in developing a non-peptide, oral agent is a testament to “our” (medical science) phenomenal scientific advances. The cost of such research (dating back at least to 2013 for relugolix) and what represents fair costs to patients or to Medicare and fair reimbursement to the pharma companies remain concerning to me.

1 Comment

Filed under General Prostate Cancer Issues, Prostate cancer therapy, Targeted treatment, Uncategorized

One response to “Pills vs Shots for Androgen Deprivation Therapy (ADT)

  1. Richard Peksens

    20% of patients with aggressive PC have their disease morph into neuroendocrine tumors which have only a single method of treatment using Carbo/Etoposide along with XRT (if not previously used) and cystectomy (if feasible). 9 years ago, my Gleason 10 prostate was treated with IMRT and a Pd103 seed implant. At recurrence four years later, cryotherapy was used followed by Zytiga/Lupron. At 10 years a 3 cm SCC occluded the bladder neck and was contiguous with the prostate. When the current chemo fails, my choices are only clinical trials. Radiation and surgery are contraindicated. I am in great physical shape without PET evidence of spread. Any insight?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s